飞禽走兽 > 开奖结果 > 澳门sands娱乐场|史上最容易想歪的数学定理,它算老几?

澳门sands娱乐场|史上最容易想歪的数学定理,它算老几?

2020-01-10 13:35:39 来源:飞禽走兽

澳门sands娱乐场|史上最容易想歪的数学定理,它算老几?

澳门sands娱乐场,真没想到

高数比我还污

如果说高数中让你一辈子忘不了的定理是夹逼定理,那么最污的定理就肯定不是它了,它勉强能算上是老三。那么老大和老二到底是谁呢?

今天超模君就带大家来见识一下“老二”,至于老大嘛,大boss总是最后登场的。那么,现在请以热烈的掌声欢迎我们的“老二”——拉格朗日中值定理(也叫拉氏定理)!

什么!拉格朗是谁?中值又是谁?

如果你有上述奇怪想法,那就不得了了,以后绝对能够干大事,不信你看:

好了,“老二”被黑得好惨,我们暂时放过他,进入正题,开始介绍一下这个定理。相信大家对拉格朗日(joseph-louis lagrange,1736~1813)并不陌生,拉格朗日在数学、力学和天文学三个学科领域中都有划时代意义的贡献,拿破仑称他为“数学科学高耸的金字塔”,是18世纪欧洲最伟大的数学家。

拉格朗日的沉默

但是拉格朗日中值定理是怎么发现的呢?课本上似乎并没有提及。现在的高数教材,一本比一本薄,内容越改越少,删去了很多趣味性的故事和帮助理解的图片,只因这些不出现在考试中。有一段话说得很好:

古希腊时代,数学家阿基米德就利用了一个结论(拉格朗日中值定理的特殊情况):过抛物线弓形的顶点的切线必平行于抛物线弓形的底,巧妙地计算出抛物弓形的面积。

后来,意大利卡瓦列里在著作《不可分量几何学》中给出一个有趣的引理:曲线段上必有一点的切线平行于曲线的弦。事实上,这不是别的,正好是拉格朗日中值定理的几何意义,它还被称为卡瓦列里定理。

m为切线斜率

跑得太快了,只好手动拖移

受前人的启发,拉格朗日在《解析函数论》一书中提出拉格朗日中值定理的代数版本,但是证明并不严格。最终由大数学家柯西给出严格证明并推广成为柯西中值定理,法国数学家博(o.bonnet)也给出了现代形式的拉格朗日中值定理。

“你给我看这些?”这时候肯定有不少已经脱了裤子的朋友在骂超模君。

对于这些朋友,超模君反手就是一巴掌。

早让你好好学习数学,整天想这些有的没的。

言归正传,知道了“老二”的来源,我们可以来认识一下他的内在了。简单而言,拉格朗日中值定理就是下图:

注意桥上标语

这座桥大概是想告诉我们,如果一辆车从桥头行驶到桥尾,用了时间t,那么在时间t内一定有某一时刻,它的速度正好等于平均速度。

下面给出拉格朗日中值定理的完整形式:

在图像上表示:

用通俗的语言解释就是,在你的人生轨迹中,如果它是连续不间断的,并且可到终点,那么肯定在人生某个时刻,有一个人,ta认定了,与你的人生位移同方向,陪你走完这一生。(单身狗的福利定理)

这一定理有着广泛的应用,第一是用来证明等式、不等式与恒等式。第二是证明有关中值问题的结论,第三是研究导数和函数的性质,第四是证明方程根的存在性和利用中值定理求极限。这些应用对于数学研究有重要的作用。

我们来举一个简单的栗子看看是怎么千呼万唤“老二”出来解题的。

方法一:由图可知,显然易得a>1。(作死法)

方法二:

其实,这是一道高考题,拉格朗日中值定理可是有一段“秒杀压轴大题”的传说

当然,为了谨慎起见,模拟题中用来玩一下是可以的,高考中就不要乱用了,因为可能会被扣分。

最后,如果我们把三大中值定理(罗尔、拉格朗日、柯西)汇合在一起,便成为一首浪漫的三角爱情诗。

yg电子游戏

上一篇:李克强主持召开专家学者和企业界人士座谈会
下一篇:研究人员找到一种更便宜更有效的方法从水中分离氢气